The first phosphagermacyclopropane prepared *via* cycloaddition of dimethylgermylene to the C=P double bond of phosphaalkene

Boris G. Kimel, Vasilii V. Tumanov, Mikhail P. Egorov* and Oleg M. Nefedov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 095 135 5328; e-mail: mpe@cacr.ioc.ac.ru

10.1070/MC2001v011n03ABEH001445

The cycloaddition reaction of phosphaalkene 2 with dimethylgermylene generated thermally in situ leads to the first representative of phosphagermacyclopropanes 3.

The [1+2] cycloaddition of heavy carbene analogues, silylenes and germylenes, to the C=C double bond has been successfully used for the synthesis of sila- and germacyclopropanes. ¹⁻³ The interactions of carbene analogues with isolated carbon–heteroatom multiple bonds are studied much lesser. In particular, only two examples of the cycloaddition of silylene⁴ and germylene⁵ to the carbon–phosphorus triple bond resulted in the formation of phosphasila- and phosphagermacyclopropenes, respectively, are known. Reactions of carbene analogues with C=P bonds of phosphaalkenes have not been described up to now.

Here we report on the generation of the first phosphagermacyclopropane (phosphagermirane) by cycloaddition of short-lived dimethylgermylene to phosphaalkene (Me₃Si)₂C=PPh **2**. The choice of **2** among the variety of known phosphaalkenes was prompted by the stability of **2** in an inert atmosphere at room temperature and, on the other hand, by the steric availability of the P=C double bond in **2**, since our preliminary studies have shown that phosphaalkenes with bulkier substituents were inert towards dimethylgermylene.

According to the ^{31}P NMR spectroscopy data, the reaction of Me₂Ge (thermally generated at 60 °C from 7,7-dimethyl-7-germanorbornadiene derivative 1^6) with phosphaalkene 2^7 (molar ratio 1:2=1.5:1) led to the formation of a single phosphorus-containing reaction product. The reaction occurs with 100% conversion of the phosphaalkene; the overall integral intensity of the ^{31}P NMR signals remained unchanged. An excess of the Me₂Ge precursor should be used because of the polymerization of dimethylgermylene in the course of the reaction.

The $^{31}{\rm P}$ NMR spectrum of the reaction product exhibits one singlet at -137.1 ppm. The position of this signal is characteristic of phosphiranes (-120 to -150 ppm). The $^{1}{\rm H}$ NMR spectrum of the product exhibits two signals of protons of two nonequivalent Me $_{3}{\rm Si}$ groups of the (Me $_{3}{\rm Si})_{2}{\rm C}$ fragment (a singlet at -0.05 ppm and a doublet at 0.28 ppm, $^{4}J_{\rm PH}$ 2.2 Hz) and two signals of protons of methyl groups of the Me $_{2}{\rm Ge}$ fragment (a singlet at 0.70 ppm and a doublet at 0.62 ppm, $^{3}J_{\rm PH}$ 3.3 Hz) with the integral intensity ratio 3:3:1:1. The characteristic constant $^{3}J_{\rm PH}$ observed for one of the signals due to the Me $_{2}{\rm Ge}$ group indicates the presence of a Ge–P bond in the product. The signals of phenyl protons are overlapped with those of 1,2,3,4-tetraphenylnaphthalene, which is formed upon the thermolysis of 7-germanorbornadiene 1.

In the 13 C NMR spectrum of the reaction product, the signal of the quaternary carbon atom of the $(Me_3Si)_2C$ fragment is observed at 23.0 ppm (which is typical of phosphirane carbon atom signals⁹) as a doublet with the coupling constant $^{1}J_{PC}$ 69 Hz. We were unable to assign the signals of the carbon atoms of the

Me₃Si and Me₂Ge groups since they overlap with numerous signals of the $(Me_2Ge)_n$ polymers in the region from -5 to +5 ppm.

In the 29 Si NMR spectrum of the reaction product, two doublets (at 0.29 and 0.93 ppm) of the non-equivalent Me₃Si groups are present. The coupling constants $^2J_{PSi}$ equal to 21.4 and 4.8 Hz, respectively, correspond to the suggested structure of 3.

Thus, the spectroscopic data indicate that the product of the reaction of dimethylgermylene with phosphaalkene 2 has the structure of phosphagermirane 3.

Phosphagermirane 3 is a highly labile compound, which rapidly decomposes on air or upon heating. Our attempts to isolate 3 from solution were unsuccessful.

We attempted to prepare other phosphagermiranes by reactions of phosphaalkene ${\bf 2}$ with stable germylenes and their complexes. We found that GeI_2 and $[(Me_3Si)_2N]_2Ge$ do not react with ${\bf 2}$ at room temperature, while the interaction of ${\bf 2}$ with $GeCl_2$ ·dioxane resulted in a mixture of oxidation products of phosphaalkene ${\bf 2}$.

To obtain the silicon analogue of **3**, we studied the reaction of phosphaalkene **2** with dimethylsilylene generated photochemically from the silicon analogue of **1**, 7,7-dimethyl-7-silanorbornadiene **4**¹⁰ (C_6D_6 , 20 °C, **2**:**4** = 1:1). The ³¹P NMR spectrum of reaction products exhibits a singlet at –132.4 ppm, which can be assigned to corresponding 1,1-dimethyl-2-phenyl-3,3-bis(trimethylsilyl)-2-phosphasilirane **5** by analogy with phosphagermirane **3**. Unfortunately, phosphaalkene **2** is a photolabile compound and partially photodecomposes during the reaction to give a number of products. These products exhibit signals in the ¹H, ¹³C and ³¹P NMR spectra; thus, we failed to assign unequivocally the signals belonging to phosphasilirane **5** in the ¹H and ¹³C NMR spectra.

This work was supported by the Russian Foundation for Basic Research (grant nos. 98-03-32935 and 00-15-97387), the State Subprogramme 'Fundamental Problems of Modern Chemistry' (grant no. 9.3.03) and INTAS (grant no. 97-30344).

References

- 1 W. P. Neumann, Chem. Rev., 1991, 91, 311.
- 2 O. M. Nefedov, M. P. Egorov and S. P. Kolesnikov, Sov. Sci. Rev. B. Chem., 1988, 12, 53.
- 3 W. Ando, H. Ohgaki and Y. Kabe, Angew. Chem., Int. Ed. Engl., 1994, 33, 659.
- 4 A. Shaefer, M. Weidenbruch, W. Saak and S. Pohl, *Angew. Chem.*, 1987, 99, 806.

 † 2,2-Dimethyl-1-phenyl-3,3-bis(trimethylsilyl)-1,2-phosphagermirane 3. An NMR sample tube was charged with 85 mg (0.32 mmol) of phosphaalkene 2 and 258 mg (0.48 mmol) of 7,7-dimethyl-1,4,5,6-tetraphenyl-2,3-benzo-7-germanorbornadiene 1 in 1.0 ml of $\rm C_6D_6$. The reaction mixture was heated at 60 °C in the spectrometer probehead. During the reaction the intensity of the ^{31}P NMR signal of starting phosphaalkene 2 at +376 ppm decreased down to zero and another signal at -137.1 ppm appeared simultaneously. The reaction was complete in 3 h.

¹H NMR (C_6D_6) δ: –0.05 (s, 9H, Me₃Si), 0.28 (d, 9H, Me₃Si, $^4J_{\rm PH}$ 2.2 Hz), 0.62 (d, 3H, Me, $^3J_{\rm PH}$ 3.3 Hz), 0.70 (s, 3H, Me). $^{13}{\rm C}$ NMR (C_6D_6) δ: 23.0 [d, $C({\rm SiMe_3})_2$, $^1J_{\rm PC}$ 68.9 Hz]. $^{29}{\rm Si}$ NMR (C_6D_6) δ: 0.29 (d, Me₃Si, $^2J_{\rm PSi}$ 21.4 Hz), 0.93 (d, Me₃Si, $^2J_{\rm PSi}$ 4.8 Hz). $^{31}{\rm P}$ NMR (C_6D_6) δ: –137.1 (s).

- 5 A. H. Cowley, S. W. Hall, C. M. Nunn and J. M. Power, J. Chem. Soc., Chem. Commun., 1988, 753.
- 6 W. P. Neumann and M. Schriewer, *Tetrahedron Lett.*, 1980, **21**, 3273. 7 R. Appel, J. Peters and A. Westerhaus, *Tetrahedron Lett.*, 1981, **22**,
- 8 A. Marinetti and F. Mathey, Organometallics, 1984, 3, 456.
- 9 M. J. M. Vlaar, A. W. Ehlers, F. de Kanter and K. Lammertsma, *Angew. Chem., Int. Ed. Engl.*, 2000, **39**, 2943.
- 10 J. A. Hawari and D. Griller, Organometallics, 1984, 3, 11.

Received: 23rd February 2001; Com. 01/1771